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ABSTRACT

This paper describes a system called PDS, a forward chaining, rule.based architecture
designed for the online, realtime diagnosis of machine processes. Two issues arise in the
application of expert systems to the analysis of sensor-based data: spurious readings and
sensor degradation. PDS implements techniques called retrospective analysis and meta-
diagnosis as solutions to these problems. These techniques and our experiences in
knowledge acquisition in a large organization, and the implementation of PDS as a

portable diagnostic tool are described. .
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1. Introduction
Research in the field of Al diagnosis systems has been evolving rapidly since the first event-based

(Nelson, 1982) or surface (Hart, 1982) reasoning systems (Shortliffe, 1976; Pople, 1977; Fox &
Mostow, 1977; Duda et al., 1978), to systems that have functional or deep knowledge of their domain
(Davis et al., 1982; Genesereth, 1982; Underwood, 1982; McDermott & Brooks, 1982). Whatever the
style of diagnosis, these systems assume that information is provided manually through a question
asking/answering dialogue, or automatically by means of sensors, or other devices. In both cases,
the information is handled in the same manner, which, we have found, should not always be the case.
In applications where the sources of information may be errorful (e.g., sensors), we found that it is just
as important for a diagnostic system to reason about the sources of its information arnd their veracity,
as it is to perform diagnosis based on the information.

During the summer of 1981, we began the design and construction of a rule-based architecture,
called POS, for the on-line, realtime diagnosis of malfunctions in machine processes. Diagnoses
would be based on information acquired from tens to hundreds of sensors attached to a process.
During the application of PDS, a number of sensor related problems arose. First, the process sensors
in our applications degrade over time, reducing their diagnostic value. Second, a properly operating
sensor may provide spurious readings periodically due to factors exogenous to the process. Though
the frequency of such malfunctions are small, their detection may result in substantial savings. For
example, in the electrical power utilities, replacement costs of electricity lost due to sensor
malfunction averages $500,OO/year per plant (Meiger et al., 1981). Any diagnosis system which is to
receive its information directly from devices which possess these characteristics must be able to
handle the information without providing incorrect diagnoses, or at least have its diagnosis degrade
gracefully with the sensors. As a result, PDS was extended to deal gracefully with these problems.
These extensions are the topics of this paper.

In the following, the architecture of PDS is described. We then examine the facilities provided by
PDS to deal with sensor problems. Following, we discuss our experiences in the acquisition and
testing of knowledge in PDS, and describe its implementation.

2. PDS: Basic Representation
POS is a forward chaining rule-based system implemented in the Schema Representation

Language SRL (Fox, 1979; Wright & Fox, 1982). The representation and propagation of belief is
similar to that found in MYCIN (Shortliffe, 1976). For each rule, there are schemata describing each
constituent part of the rule's antecedent (or evidence), a schema describing the rule's consequent (or
hypothesis), and a schema describing the relationship between the rule's evidence arnd hypothesis.
The implementation of rules as schemata results in an inference net similar to that found in
PROSPECTOR (Duda et al., 1978). Sensor readings, hypotheses, and malfunctions are represented
as sub-types of the pds-node schema (figure 2-1).
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({ pds-node
ma: "level of belief in the node being true"
mo: "level of disbelief in the node being true"

CF: "level of certainty = mb- md"
SUPPORTING-RULES: "rules for which this node is hypothesis"

SUPPORTED-RULES: "rules for which this node is evidence"

SIGNAL: "contains signal schema name(s)"

DESCRIPTION: "English description of the node"

HAS. IS-A: (or sensor hypothesis malfunction) 1)

Figure 2-1: Generic Node in POS

The following specializations (see HAS-IS-A Slot) of pds-nodes are defined:

1. sensor schemata represent the actual sensors. Two additional slots are defined to store

the current reading: READING-VALUE and READING-TIME.

2. malfunction schemata correspond to those states of the physical system which are

indicative of the problem(s) to be diagnosed.

3. hypothesis schemata represent intermediate conclusions in the inference net.

A belief-rule schema (figure 2-2) represents those rules which are used by the inference program
to propagate belief.
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{{ belief-rule

EVIDENCE:

HYPOTHESIS:

SF-FUNCTION: "sufficiency function"

NF-FUNCTION: "necessity function"

SF: "value from SF.FUNCTION"
NF: "value from NF-FUNCTION"

CONTEXT: "context in which.the rule fires"

DESCRIPTION: "English description of the rule" }}

Figure 2-2: belief-rule Schema

EVIDENCE is represented as a Boolean combination of nodes. The combination is explicitly

represented by and, or, and not schemata. Each belief-rule has associated with it one or more

contexts which are also represented as a Boolean combination. If the context is evaluated to be true,

then the rule will be included in the diagnostic process.

Belief propagation is similar to the one used by MYCIN. To summarize, each hypothesis and

malfunction has associated with it a measure of belief MB, and disbelief Mo. These measures are

altered by the evaluation of supporting belief-rules. In a belief- rule, the sufficiency of evidence is

determined by evaluating the contents of the SF-FUNCTION siot. The necessity of evidence is

determined by evaluating the contents of the NF-FUNCTION slot. Table 2-1 shows the direction of

change of beliefs and disbeliefs as determined by evidence CF (the cF of disjunctive evidence (OR) is

the maximum of the constituents, and the CF of conjunctive evidence is the weighted average of

constituents (AND) or the mimimum of constituents (FAND)), and the rule's SF and NF (an up-arrow
indicates an increase, a dash indicates no change). Actual updating is performed using MYCIN's

updating rule (e.g., M,,nw a MBold + (1 - MB0 d) * rule-support).

.--------------.------------------------------ +---------------------------

I Rule: I Sufficiency I Necessity I
I Evidence: I SF > 0 I SF < 0I NF > 0 I NF < 0
------------------ +--------------.9--------------+--------------.--------------
I Present (CF[E]>O) I i MB[HJ I f MDOI] I - I -- I
+-----------------+--------------+--------------+----------------------------4

I Missing (CF[E]<O) I "- I --- I t MOCH] I f AIe[H] I
-------------- . ----------- +----------------------------------------

Table 2-1: Belief Revision Definition
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A pds-node may have one or more signals attached to it (Figure 2-3). When the node with which
a signal is associated has a certainty factor CF in the range specified in the signal definition, then the
text in the MESSAGE Slot is displayed arnd the function whose name is in the action slot is evaluated
(this may trigger an alarm, for example).

ff signal
MIN-RANGE: <constant>

MAX-RANGE: (constant>
MESSAGE: "text to be displayed"
ACTION: (function-name>
DESCRIPTION: "English text describing the signal" )

FIgure 2-3: sIgnal Schema

A context (Figure 2-4) specifies an external condition which may be relevant to the execution of
the diagnostics. For example, when diagnosing a machine, different rules may apply at start-up than
found during normal operation. For each rule, a Boolean of contexts can be defined, such that the
rule will fire only when the context specification is true.

ifcontext
VALUE: (true I false 10ll0

DESCRIPTION: "English description of this context" )

Figure 2-4: context Schema

As found in most knowledge representation systems, SRL provides the user with the ability to
define type hierarchies of schemata using the is-a relation, and Instances of types using the
Instance relation. Rules may refer to types of hypotheses, sensors, and malfunctions, rather than
Instances. When the knowledge network for a particular machine is created, instances of sensors,
etc. Inherit rules attached to nodes In their related type hierarchy. A library of rules may be created
for different tpsof machines, and instantiated with little effort
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3. Ret rospective Analysis
Spurious readings do occur often enough in sensors to require their detection and omission from

the diagnostic process. These readings may be due to factors exogenous to the process, or to sensor
malfunction. Spurious readings are handled in most diagnostic systems before they reach the
system: the readings are smoothed or omitted, manually or by a pre-processor associated with the
sensor. It quickly became apparent in our applications that such an approach was not sufficient.
First, external modification of readings prohibit the system from performing other types of analyses
not anticipated in the design of the sensor and its pre-processor. Second, we found that
retrospective analysis of the unaltered sensor data was important in order to refine the rule base.

Solutions to this problem were found to have much in common with other diagnostic techniques. In
particular, a variety of time series analyses was found to be important. Rate of change (first
derivative), averages, filtering, and curve smoothing are examples of the kinds of time domain
analysis employed both at the front end of diagnostic systems, and during the diagnosis itself.

To provide general retrospective analysis support, PDS provides the ability to store and analyze
successive readings of a sensor, or the successive values of any other node. A reading-set schema
(figure 3-1) acts as a memory for P05. Successive readings/values are stored in the READING-LIST
slot. Information about a reading, e.g., time of reading, may be attached directly to it using SRL's
facility for attaching meta-schemata to a schema, slot, and/or value.

{{ reading-set
READING-LIST: "list of readings"
usT*SIZE: "maximum number of readings in the list"
FUNCTION: "name of function which analyzes the reading list"
STATISTIC: "result of applying the function to the data"
me: "belief in STATISTIC"
MD: "disbelief in STATISTIC"
SUPPORTED- RULES: "rules for which this node is evidence"
SUPPORTING- RULES: "rules for which this node is hypothesis"
DESCRIPTION: "English description of this node" ))

Figure 3.1: reading-set Schema

Another type of rule, called reading-transform (figure 3-2), is the link between some input node,
usually, but not necessarily a sensor node, and a reading-set node. When a reading -t ransfo rm
rule fires, it TRANSFORM function is applied to the value found in the rule's EviDENCE node. If the
evidence node Is a sensor, the value Is a sensor READING, otherwise it is the node's certainty factor.
The transform Is useful for such things as conversions of engineering units, scaling, etc. The result of
the transformation is automatically appended to the READING-LIST of the reading-set node. When all
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the rules leading to a reading-set node have fired, the FUNCTION specified in the reading-set schema
is applied to the READING-LIST. This function does all the required signal processing and the result is
placed in the STATISTIC slot of the reading-set node. The STATISTIC can, from this point on, be used
as a "normal" sensor reading.

({ reading-transform
INPUT-NODE: "Name of node supplying input to transform"
READING-SET-NODE: "Destination of result of transform"
TRANSFORM: "Name of transform function"
DESCRIPTION: "English description of this node" }}

Figure 3-2: reading-transform Schema

4. Meta-Diagnosis
The sensor intensive applications of PDS share the problem of sensor degradation; environments

containing corrosive chemicals and widely varying temperatures can reduce sensor performance.
This problem has been solved partially at the machine level by the placement of redundant,
overlapping sensors. But at the diagnosis level, the problem of recognizing and removing
malfunctioning sensors from the diagnostic process has received little attention in the Al literature.

If the rules which used sensors as evidence only referred to a single sensor, then it might be
possible to summarize the acceptability of a sensor's reading by the CF associated with it. Setting the
CF to zero would stop propagation of any belief or disbelief by the supported rule. (The change in
belief provided by a rule is the product of either the rule's SF or NF and the evidence's CF.) But in
many applications sensors may be combined as evidence in a single rule. Using CF's to reflect sensor
degradation in such systems would have an unexpected result. Consider the following:

1. If evidence is conjunctive and the fuzzy minimum operator (FAND) is used to derive the
evidential CF, then the existence of a zero CF'would remove the entire rule though the
other sensors may be operating and overlap the redundant sensor.

2. If evidence is conjunctive and a weighted average is used to derive the evidential CF, then
the sensor(s) with a zero CF would reduce the rule's change in belief since its weight Is
not reduced (PD8 uses a weighted average to c irIve the evidential CF).

Neither approach solves the problem satle" .,orily.

We call the solution implemented In PDS meta-dlagnosls. The first step in meta-diagnosis is the
detection of sensor degradation. This is accomplshed through the use of rules which monitor a
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sensor's behavior. The ultimate consequent of these rules is one or more sensor malfunction
schemata. The second step is the adaptation of rules to reflect the reduction in importance of a
malfunctioning sensor in the diagnostic process. This is accomplished through the introduction of a
pa rametric-alteration rule (figure 4-1). This rule provides the capability of altering the definition of
any other node or rule in the system. A parametric-alteration rule may be attached to any node.
When the EVIDENCE-SLOT in the node changes, the rule's TRANSFORM function is applied to the value,
possibly altering the HYPOTHESIS schema.

{{ parametric-alteration
IS-A: rule

EVIDENCE: "the schema monitored by this rule"
EVIDENCE-SLOT: "the slot whose value is monitored by this rule"

TRANSFORM: "function whose result is placed
in the hypothesis slot"

HYPOTHESIS: "schema altered by this rule"
HYPOTHESIS-SLOT: "slot in hypothesis altered by this rule" }}

Figure 4-1: parametric-alteration Schema

An example of the use of this type of rule is the reduction of a sensor's weight in the conjunctive
evidence of a belief-rule. It is important to note that this is a meta-rule in the sense that it alters the
rule base, while not performing actual diagnosis. Such rules must be used carefully as they may
introduce cycles in the propagation of belief.

5. Composite Sensors
An alternative method of analyzing and reacting to readings from redundant overlapping sensors,

which falls short of altering the rule base as provided by meta-diagnosis, is to combine multiple
sensors into a single composite sensor. In many domains, techniques such as:

" voting, and
" auctioneering (i.e., Ignoring the lowest or highest reading)

are used to combine sensor readings. POS supports the exploration of these types of techniques by
means of a composite-sensor schema (figure 5-1).
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ff composite- sensor
IS-A: pds-node
SENSOR: "list of sensors whose readings are to be combined"
TRANSFORM: "function which generates a composite reading"
READING-VALUE: 1

Figure 5.1: composite- sensor schema

The TRANSFORM slot contains a lisp function which analyzes the individual readings of the sensors
listed in the SENSOR slot, and fills the READING-VALUE, MB, and MD slots with the composite reading.
Standard functions can be provided to implement voting, auctioneering, and other multiple sensor
techniques.

6. Knowledge Acquisition and Testing
A number of systems capable of performing on-line diagnosis in an industrial environment are

under development at the Westinghouse Electric Corporation. A working prototype of one of these
systems is being installed and tested at this time and is the subject of the following discussion.
Although many of the steps in the development of this prototype are common ones to the creator of
an expert system, they often brought unexpected results when carried out in the commercial
environment of a single large company.

The knowledge engineer responsible for the generation of rules for this system was actually a team.
The person writing the rules was an engineer whose background was in the problem being diagnosed
(a quasi-expert) and whose acquaintance with PDS, consisted of a working knowledge of the general
principles and those structures which applied specifically to the problem at hand. Working in close
conjunction with this "quasi-expert" was an engineer whose background was in expert systems and
who knew PDS in depth.

As with the development of most systems of this type, the first step was the creation of a small
system that we called a "root system". It began with ten sensors and used forty-four rules and
twenty-nine intermediate hypotheses to indicate seven malfunctions. It took approximately one
month to develop and test. This "root" served us in two ways. First, it acted as a vehicle for eliciting
Information and stimulating the thinking of the experts. Secondly, it was a tool to sell the experts on
the feasibility of what they were being asked to undertake and, more importantly, to sell upper
management on the probability of a return on what they were being asked to invest.

The testing scheme developed for the "root system" was a general one, and with some expansion
was used for the prototype itself. First, approximately 150 sets of test data were generated in four
groups. Group one tested the interactions of the rules themselves. Group two tested the system's
response to malfunctions previously diagnosed by the experts. Group three tested the experts'
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response to malfunctions diagnosed by the system. Group four comparison- tested the responses of
the experts and the system to data neither had "seen" before.

The second phase of the testing is currently under way, and involves the installation and operation
of the sensors used in the diagnosis system in an industrial environment. The resulting data are fed
directly to the diagnosis system and the presence of any malfunctions are noted, recorded and
displayed.

Preliminary results of this testing are promising. Although mathematical analysis of these results
has not yet been performed, the expert analyses of the data have agreed quite closely, with the
computer analyses.

No development project is without its problems and this one has been no exception. Our first major
problem was in convincing the necessary experts to participate in the project. Older and more
established engineers, most useful as experts, have been traditionally wary of computer systems and
the perceived possibilities of being replaced by a machine. Also the necessary experts were
distributed throughout the company, raising many organizational problems.

Once a sufficient number of experts agreed to participate in the project, we discovered the second
major difficulty; problems within the cognitive models of the experts themselves. When the experts
were questioned about the if-then rules used in their thinking processes their first tendency was to go
from a sensor reading to a final malfunction in one step. This is not to say that one-step diagnoses
are not possible, just uncommon. After some work, the experts began to think of their diagnosis rules
step-by-step, but then the difficulties of verbalizing the steps became evident; at this point the quasi-
expert status of the knowledge engineer became very valuable. After the rules had been established
to the satisfaction of the experts and the knowledge engineer, quantifying the steps in terms of
sufficiency and necessity functions became the final hurdle. For this step of the process a script was
developed using the form of the questions that, through trial and error, seemed to elicit the most
consistent responses from the experts. This script was then used for all experts evaluating all rules.
The fact that most engineers are very logic-oriented and generally resent what they consider to be a
need to justify their decision-makcing processes should not be discounted at any step of the cognitive
process.

The third problem encountered was an actual gap in the knowledge of the experts. The expert
diagnosis of the system under consideration is in itself a new problem and the knowledge of sensor
malfunction and the form it may take is extremely limited. At this time the problem is being
addressed by using the data from the on-line test as a basis for the on-going development of rules
relating to sensor behavior.

The sensors were also the source of another problem, this time in the testing of the system. Since
the sensors being used for the on-line test malfunctioned more often than desired, it was difficult to
obtain data to test anything but malfunction detection rules. It is expected that this problem can be
overcome by the use of more efficient sensor systems currently being designed.

The most difficult problem discovered during development was the disagreement of the experts on
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certain rules of diagnosis. It is difficult for a knowledge engineer to offer any solution to this problem.
When the problem occurred an attempt was made to hold group meetings of the experts to discuss
the disagreements and reach a consensus. If no agreement could be reached, the rule was modified,
usually making it less effective. Fortunately, this occurred infrequently and did not unduly reduce the
efficacy of the system.

Some "rules of thumb" became obvious during the project and when followed gave optimum
results for the time involved. It is probably best to present then in list form:

1. Do not misrepresent the capabilities of the system. It will alienate the experts and raise
management expectations to a level the system cannot deliver.

2. Develop a script for use in questioning the experts. If the same question is asked two
ways, it will often elicit answers as if two different questions had been asked.

3. After a phase of development is completed (by judgement of the knowledge engineer)
turn the system over to any interested experts. This often results in information that was
missed during questioning.

4. For best efficiency, the team approach to knowledge engineering seems to be successful.
The quasi-expert knew when steps were left out and could offer the experts assistance in
verbalizing their thought processes, while the PDS expert insured that the most efficient
POS structures were used throughout.

7. Implementation
As mentioned earlier, PDS is written in SRL, which in turn is implemented in the Franz Lisp dialect

of LISP running on a VAX-780, under the VMS operating system. The program consist of four parts:
the knowledge-base development functions, the input simulation functions, the inference mechanism
and an explanation facility.

The knowledge-base development part of PDS provides the "tools" that the knowledge engineer,
or the sophisticated expert, can use to develop the rule base. Aside from the obvious functions that
ease the addition, deletion and editing of rules, an extensive library of utility functions exists to list and
describe the rules, to save and restore the rule base, to print hard copy listings, to initialize the system
to a predefined state, and so on.

Testing of the rules is facilitated by the presence of functions that allow the manual entry of sensor
values and the setting of specific contexts. Input data can be entered in lieu of actual sensor
readings. An edit function is provided to allow the study of the effects of small modifications in sensor
values on the propagation of belief process.

The Inference program performs forward propagation of belief from sensor nodes. If a parametric
alteration rule fires, all nodes and rules directly or indirectly affected are re-evaluated.
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The explanation facility is quite primitive. It does not involve natural language generation, but rather
it puts together sentences from "canned" fragments contained in the description slot of the various
schemata. Plans exist to improve on this particular feature, both in the language generation aspect
and in the range of questions it can answer (the only question at this time is "why ?"). The explanation
facility can be connected to a text-to-speech converter (the PROSE 2000 board by Telesensory,lnc.),
thereby being able to "speak" its explanations.

A goal of this project is to provide machine technicians with a portable and inexpensive diagnostic
tool. A microprocessor version of PDS is being implemented on a four board package (CPU, memory,
graphics I/0 and text-to-speech converter), that fits in a hand-carry suitcase. We call it the "Expert in
a Box" version of PDS. It has two modes of operation. In the independent mode, it can perform
diagnosis only. In the alternative mode, it can connect, via a built-in modem, to the VAX, and thereby
act as an intelligent remote terminal for the expert system. In this mode, it can also be connected to a
loudspeaker, for voice explanations, and to a color graphic display.

8. Conclusions
PDS is a forward chaining rule-based sysiem for process diagnosis. It is being implemented in

environments in which data acquisition is totally automated, thereby limiting the amount of user
interaction. In pursuing its implementation in these environments, problems of spurious readings and
general degradation had to be solved. We chose to solve these problems in three ways. First, raw
data was introduced, stored, and retrospectively analyzed in the knowledge base in order to provide
greater flexibility. Second, meta-diagnosis was performed to adapt the rule-base to changes in its
physical environment (i.e., sensor degradation),: as sensors degrade, PDS focuses its analysis only on
the sensors which pro.ide reliable information. Third, redundant sensor readings were analyzed and
combined into a composite sensor. The approach reported here is just a step towards the general
problem of the intelligent acquisition and analysis of sensor-based information. Techniques such as
sensor redirection and tuning remain to be investigated.
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